Home>Articles>Gas Uses
Gas Uses (visite count : 1710)

Natural gas is primarily used in the northern hemisphere, North America and Europe are major consumers.

Mid-stream natural gas
Natural gas flowing in the distribution lines and at the natural gas well head are often used to power natural gas powered engines. These engines rotate compressors to facilitate the natural gas transmission. These compressors are required in the mid-stream line to pressurize and to re-pressurize the natural gas in the transmission line as the gas travels. The natural gas transmission lines extend to the natural gas processing plant or unit which removes the higher molecular weighted natural gas hydrocarbons to produce a British thermal unit (BTU) value between 950 and 1050 BTUs. The processed natural gas may then be used for residential, commercial and industrial uses.

Often mid-stream and well head gases require removal of many of the various hydrocarbon species contained within the natural gas. Some of these gases include heptane, pentane, propane and other hydrocarbons with molecular weights above Methane (CH4) to produce a natural gas fuel which is used to operate the natural gas engines for further pressurized transmission. Typically, natural gas compressors require 950 to 1050 BTU per cubic foot to operate at the natural gas engines rotational name plate specifications.

Several methods are used to remove these higher molecular weighted gases for use at the natural gas engine. A few technologies are as follows:

Power generation
Natural gas is a major source of electricity generation through the use of cogeneration, gas turbines and steam turbines. Natural gas is also well suited for a combined use in association with renewable energy sources such as wind or solar[41] and for alimenting peak-load power stations functioning in tandem with hydroelectric plants. Most grid peaking power plants and some off-grid engine-generators use natural gas. Particularly high efficiencies can be achieved through combining gas turbines with a steam turbine in combined cycle mode. Natural gas burns more cleanly than other hydrocarbon fuels, such as oil and coal, and produces less carbon dioxide per unit of energy released. For transportation, burning natural gas produces about 30 per cent less carbon dioxide than burning petroleum. For an equivalent amount of heat, burning natural gas produces about 45 per cent less carbon dioxide than burning coal for power.[42] The US Energy Information Administration reports the following emissions in million metric tons of carbon dioxide in the world for 2012:

Coal-fired electric power generation emits around 2,000 pounds of carbon dioxide for every megawatt hour generated, which is almost double the carbon dioxide released by a natural gas-fired electric plant per megawatt hour generated. Because of this higher carbon efficiency of natural gas generation, as the fuel mix in the United States has changed to reduce coal and increase natural gas generation, carbon dioxide emissions have unexpectedly fallen. Those measured in the first quarter of 2012 were the lowest of any recorded for the first quarter of any year since 1992.

Combined cycle power generation using natural gas is currently the cleanest available source of power using hydrocarbon fuels, and this technology is widely and increasingly used as natural gas can be obtained at increasingly reasonable costs. Fuel cell technology may eventually provide cleaner options for converting natural gas into electricity, but as yet it is not price-competitive. Locally produced electricity and heat using natural gas powered Combined Heat and Power plant (CHP or Cogeneration plant) is considered energy efficient and a rapid way to cut carbon emissions.[45] Natural gas power plants are increasing in popularity and generate 22% of the worlds total electricity. Approximately half as much as generated with coal.

Domestic use
Natural gas dispensed from a simple stovetop can generate temperatures in excess of 1100 °C (2000 °F) making it a powerful domestic cooking and heating fuel.[47] In much of the developed world it is supplied through pipes to homes, where it is used for many purposes including ranges and ovens, gas-heated clothes dryers, heating/cooling, and central heating. Heaters in homes and other buildings may include boilers, furnaces, and water heaters. Both North America and Europe are major consumers of natural gas.

In the US Compressed natural gas (CNG) is used in rural homes without connections to piped-in public utility services, or with portable grills.[citation needed] Natural gas is also supplied by independent natural gas suppliers through Natural Gas Choice programs throughout the United States. However, as CNG costs more than LPG, LPG (propane) is the dominant source of rural gas.

Transportation
CNG is a cleaner and also cheaper alternative to other automobile fuels such as gasoline (petrol) and diesel. By the end of 2012 there were 17.25 million natural gas vehicles worldwide, led by Iran (3.3 million), Pakistan (3.1 million), Argentina (2.18 million), Brazil (1.73 million), India (1.5 million), and China (1.5 million).[48] The energy efficiency is generally equal to that of gasoline engines, but lower compared with modern diesel engines. Gasoline/petrol vehicles converted to run on natural gas suffer because of the low compression ratio of their engines, resulting in a cropping of delivered power while running on natural gas (10%–15%). CNG-specific engines, however, use a higher compression ratio due to this fuel's higher octane number of 120–130.

Fertilizers
Natural gas is a major feedstock for the production of ammonia, via the Haber process, for use in fertilizer production.

Aviation
Russian aircraft manufacturer Tupolev is currently running a development program to produce LNG- and hydrogen-powered aircraft.[51] The program has been running since the mid-1970s, and seeks to develop LNG and hydrogen variants of the Tu-204 and Tu-334 passenger aircraft, and also the Tu-330 cargo aircraft. It claims that at current market prices, an LNG-powered aircraft would cost 5,000 roubles (~ US$218/ £112) less to operate per ton, roughly equivalent to 60 per cent, with considerable reductions to carbon monoxide, hydrocarbon and nitrogen oxide emissions.

The advantages of liquid methane as a jet engine fuel are that it has more specific energy than the standard kerosene mixes do and that its low temperature can help cool the air which the engine compresses for greater volumetric efficiency, in effect replacing an intercooler. Alternatively, it can be used to lower the temperature of the exhaust.

Hydrogen
Natural gas can be used to produce hydrogen, with one common method being the hydrogen reformer. Hydrogen has many applications: it is a primary feedstock for the chemical industry, a hydrogenating agent, an important commodity for oil refineries, and the fuel source in hydrogen vehicles.

Other
Natural gas is also used in the manufacture of fabrics, glass, steel, plastics, paint, and other products.
Date: 11/18/2015
Source:
certificates
Contact Us

Address: Unit 1,No 1,Golha St., Paknezhad Blv., W. Sarv St., Saadat Abad Street. Tehran-Iran

Postal code : 1998994891
Phone : +9821 - 22343263       |      Fax. : +9821 - 22346709
Info@AfamEng.com
Copyright © Atrin Farayand Mahan Co. All Rights Reserved . WebDesign By ParsianMehr